Research: A new era for research into aging

eLife is publishing a special issue on aging, geroscience and longevity to mark the rapid progress made in this field over the past decade, both in terms of mechanistic understanding and translational approaches that are poised to have clinical impact on age-related diseases.
  1. Matt Kaeberlein  Is a corresponding author
  2. Jessica K Tyler  Is a corresponding author
  1. Department of Laboratory Medicine and Pathology, University of Washington, United States
  2. Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, United States

Every major cause of death and disability in the developed world shares a greatest risk factor, and it is probably not what most people would think. Smoking, obesity, a sedentary lifestyle and drinking too much alcohol all contribute to disease: however, their contributions are small in comparison to the physiological changes that result from aging. Whether biological aging causes the many functional declines that occur with age, or just permits them, is perhaps open for debate, but there is no question that, for most of us, biological aging determines how and when we and our loved ones will get sick and die.

This connection between aging and disease has become particularly consequential during the COVID-19 pandemic, with the vast majority of severe cases and deaths occurring among the elderly. Given this obvious relationship, it is somewhat surprising how slowly the biomedical research community has come to appreciate the importance of biological aging in many of the disease processes under study. It is our hope that the articles in the eLife special issue on aging, geroscience and longevity will contribute to a greater appreciation and understanding of aging biology among the broader scientific community. A number of the authors of these articles also spoke at a recent eLife symposium on this topic.

Today, unfortunately, too many scientists study individual diseases without recognizing the impact of aging biology. It is still common, for example, to see research studies in cancer, neuroscience, metabolism and other fields where young animal models (such as 4–6 month old mice) are used to study disease processes that almost exclusively occur in old people. ‘Mice are not people’ is a standard refrain when explaining why so many preclinical therapies fail in human trials. Perhaps the mouse isn’t the problem. Failing to account for the physiological changes that occur during aging, both in mice and in people, may be a much bigger reason why so much preclinical research fails to translate to the clinic.

It is still common to see research studies in cancer, neuroscience, metabolism and other fields where young animal models are used to study disease processes that almost exclusively occur in old people.

Thinking about certain conserved molecular mechanisms as 'hallmarks' or 'pillars' of aging (Kennedy et al., 2014; López-Otín et al., 2013) has benefitted researchers within the field, and has also allowed scientists outside the field to begin to recognize how aging biology impacts on their own research. Many of these conserved mechanisms are studied in the papers in this special issue, including telomere attrition, mitochondrial dysfunction, cellular senescence, epigenetic alterations, stem cell exhaustion, genomic instability, and loss of proteostasis.

Another important advance in aging research has been the development of a concept called geroscience: researchers in this area seek to understand mechanistically how the hallmarks of aging cause age-related disease and functional decline (Sierra and Kohanski, 2017). The growth of the geroscience concept also reflects a recognition that aging research is much closer to clinical application than it was twenty years ago. Numerous interventions have been developed that target one or more of the hallmarks of aging in order to delay, or even reverse, age-related functional declines. In rodents, for example, it has been shown that the drug rapamycin can prevent age-related diseases and improve function in multiple aged tissues and organs. Now, in the eLife special issue on aging, An et al. report that rapamycin also works in the oral cavity and can reverse periodontal disease in mice (An et al., 2020). Other articles suggest translational strategies to target specific hallmarks of aging for intervertebral disc degeneration (Cherif et al., 2020) and age-related heart disease (Chiao et al., 2020). At the time of writing there are two review articles and more than 20 research articles in the special issue, and more will be added over time.

The future of aging research is brighter than ever before, and the pace of discovery is only increasing. We look forward to major breakthroughs over the next few years that will revolutionize the way we think about aging biology and have the potential to significantly impact human healthspan and longevity.

References

Article and author information

Author details

  1. Matt Kaeberlein

    Matt Kaeberlein is an eLife Senior Editor and is in the Department of Laboratory Medicine and Pathology, University of Washington, Seattle, United States

    For correspondence
    kaeber@uw.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421
  2. Jessica K Tyler

    Jessica K Tyler is an eLife Senior Editor and is in the Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, United States

    For correspondence
    jet2021@med.cornell.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9765-1659

Publication history

  1. Version of Record published: January 28, 2021 (version 1)

Copyright

© 2021, Kaeberlein and Tyler

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,924
    views
  • 333
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matt Kaeberlein
  2. Jessica K Tyler
(2021)
Research: A new era for research into aging
eLife 10:e65286.
https://doi.org/10.7554/eLife.65286
  1. Further reading

Further reading

    1. Cell Biology
    Gang Liu, Yunxuan Hou ... Xiumei Jiang
    Research Article

    Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron–sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron–sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Christopher TA Lewis, Elise G Melhedegaard ... Julien Ochala
    Research Article

    Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77–107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.